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Abstract
Serverless computing is increasingly popular because of the promise

of lower cost and the convenience it provides to users who do not

need to focus on server management. This has resulted in the

availability of a number of proprietary and open-source serverless

solutions. We seek to understand how the performance of server-

less computing depends on a number of design issues using several

popular open-source serverless platforms. We identify the idiosyn-

crasies affecting performance (throughput and latency) for different

open-source serverless platforms. Further, we observe that just hav-

ing either resource-based (CPU and memory) or workload-based

(request per second (RPS) or concurrent requests) auto-scaling is

inadequate to address the needs of the serverless platforms.
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1 Introduction
Serverless computing has ushered in a new era in cloud computing.

Cloud computing seeks to provide compute and storage services at

large scale and low cost to end-users through economies of scale and

effective multiplexing. Serverless computing takes this multiplexing

and scalability to the next level by allowing providers to commit

just the required amount resources to a particular application (as

many instances as necessary, but only when needed) and utilize the

resources for just the time needed to execute an invoked function.

Resources are scaled dynamically to meet the demand from user

requests. Unlike the ‘traditional’ cloud deployment model, where

the number of necessary compute instances are deployed well in

advance, serverless computing allows the cost to be near zero when

there is no demand, and scales to as many instances as needed

to meet the traffic demand. Thus, serverless is meant to be both

scalable and more cost effective.

In addition to scaling and multiplexing, serverless computing

allows developers to build, deploy and run the application on de-

mand without focusing on server management, according to the

Cloud Native Computing Foundation (CNCF) [2]. When an event

is triggered, a piece of infrastructure is allocated dynamically to

execute the code. The underlying details of resource management:
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Figure 1. Kubernetes: Network routing to export the services.

resource allocation, communication of user data, and the execu-

tion of functions is abstracted from the user. Serverless computing

manages cloud resources typically by deploying applications in dy-

namically instantiated containers. For instance, Amazon provides

AWS-Lambda [3], an event-driven, serverless computing platform

that enables to implement and deploy application code in any of the

supported languages and execute on-demand as docker-containers.

The serverless infrastructure manages the queuing of requests and

can automatically scale containers to meet fluctuating demands.

Our focus is not only on the evaluation and comparison of per-

formance, but seek to identify the key differences in the workings

of different Kubernetes-based open-source serverless platforms. We

systematically identify the strengths and deficiencies of Knative
1
,

Kubeless
2
, Nuclio

3
and OpenFaaS

4
. Our key contributions include:

• We provide an understanding of the role and interaction of the

different components of each of these platforms.

• We describe the impact of key configuration parameters of dif-

ferent components (platform, gateway, controller and function).

• We evaluate the mode and operation of auto-scaling supported

by these different platforms for different kinds of workloads.

2 Background & Comparison
Several cloud service provides (CSPs) offer serverless computing

platforms on their public clouds e.g.,AWSLambda functions, Google

Cloud Platform, Microsoft Azure, and IBM Bluemix etc. These cloud
platforms also offer other supporting services such as an event no-

tification service, storage service, database services etc. that are
necessary for operating an overall serverless ecosystem. These CSPs

govern many of the function-related characteristics such as: how

long functions can run, how long can they be kept idle, the number

of concurrent active instances, load balancing among the active

instances, retry in the case of failed requests etc. These are almost

entirely dependent on the cloud providers’ terms and conditions.

To understand the impact of these choices, it is useful to study the

functioning of open source serverless platforms such as Knative,

Kubeless, Nuclio, OpenFaaS, OpenWhisk
5
, etc.

1 https://github.com/knative 2 https://kubeless.io 3 https://nuclio.io
4 https://www.openfaas.com 5 https://openwhisk.apache.org

ar
X

iv
:1

91
1.

07
44

9v
4 

 [
cs

.P
F]

  1
3 

D
ec

 2
01

9

https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1145/3366623.3368139
https://github.com/knative
https://kubeless.io
https://nuclio.io
https://www.openfaas.com
https://openwhisk.apache.org


WOSC ’19, December 9–13, 2019, Davis, CA, USA J. Li, et al.

Client
Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

(Third party)
Ingress Controller 

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once

Event Listener
(HTTP Trigger)

Function Processor

Function Pod

Function ProcessorWorkers/Function Process(es)

(a) Nuclio Serverless Platform

Client
Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

OpenFaas 
Api Gateway

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Function Process
Fork Only Once

Function Pod

(b) OpenFaas Serverless Platform

Client
Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

(Third Party) 
Ingress Controller

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

Fork Only Once

Of-Watchdog

Warm Function
Process

Fork Only Once
  Queue-Proxy Container

Function  Container

Function Pod

(c) Knative Serverless Platform

Client

Of-Watchdog

Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

(Third Party) 
Ingress Controller

Of-Watchdog

Of-Watchdog

Warm Function Process
Fork Only Once

Function Pod

Of-Watchdog

Fork Only Once
Function  Container

Function Pod

(d) Kubeless Serverless Platform
Figure 2.Working model for different kubernetes-based serverless platforms (Nuclio, OpenFaas, Knative and Kubeless).

2.1 Open-source Serverless platforms
Several open source serverless platforms allow us to freely leverage

and mix-and-match different open source services, and to deploy

and manage the functions on self-hosted clouds. However, the chal-

lenges are the i) readiness (requires learning and setup expertise)

of the necessary infrastructure and integration of different services,

ii) challenges with management and maintenance of the neces-

sary service infrastructure. iii) lack of technical support. Hence, in

this work we specifically select four of the Kubernetes [4] based

open source serverless frameworks based on the recent popularity,
6

community support and feature richness of these platforms.

2.2 Dependency on Kubernetes
Kubernetes is a portable and extensible platform that facilitates both

declarative configuration and automation of deployment and man-

agement of containerized workloads. The serverless frameworks

rely on Kubernetes APIs for orchestration and management of the

serverless functions. Serverless platforms typically extend and pro-

vide the Custom Resource Definition (CRD) features necessary to

create and deploy the container pods (group of containers). They

depend primarily on Kubernetes for i) Configuration management

of containers and pods; ii) Pod scheduling and service discovery;

iii) Update roll-outs for functions; and iv) Replication management.

2.3 Salient Characteristics of Serverless Platforms
Fig. 2 shows the framework and key components of the 4 different

serverless platforms considered in this work.

Nuclio: Fig. 2a shows the key components of Nuclio. The distinct

feature of Nuclio is the ‘Processor’ architecture which provides

work parallelism through multiple worker processes that can run in

each container. First, the Nuclio service model supports invocation

of the ‘function’ pod directly from an external client, without the

need for any ingress controller or API gateway. Second, the function

pod consists of two kinds of processes namely the i) event-listener

and ii) one or more worker (user deployed function) processes.

Note, the event-listener can be configured with a timeout parameter

to control how long events can be queued. Third, the number of

worker processes can be setup as a static configuration parameter.

This enables the function pod to run a desired amount of function

instances as different processes, and allows parallel execution on a

multi-core node.

To quantify the benefit of having multiple workers, we experi-

mented with simple ‘http-workload’ where we implement a simple

6
Until the release of Knative and Nuclio, the Kubeless and OpenFaaS were shown to

be the top two leading serverless platforms in terms of current and planned usage [10]
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Figure 3. Throughput and latency for different number of workers

within one Nuclio function pod (100 concurrent requests).

python function that communicates with a local HTTP server (lo-

cated on Kubernetes master node), to fetch and respond with a 4

byte payload for each of the requests. Fig. 3a shows the impact

on throughput and latency for multiple workers. We observe a 4×
throughput increase with 4 workers and almost 10× improvement

with 50 workers. Note, scaling the number of workers also improves

the latency as shown in Fig. 3b.

OpenFaaS: The key components of OpenFaaS are shown in Fig-

ure 2b. The API gateway provides access to the functions from

outside the Kubernetes cluster (external routing), collects metrics

and provides scaling by interacting with the Kubernetes orchestra-

tion engine. The API gateway can be scaled to multiple instances.

Also, it can be replaced by a third-party Ingress controller.

Each function pod consists of a single container running two

kinds of processes namely the i) ‘of-watchdog’ and ii) user deployed

function process. The ‘of-watchdog’ is a tiny Golang HTTP server

that serves as the entry-point for HTTP requests to be forwarded

to the function process. Based on use case requirements, the ‘of-

watchdog’ can be operated in 3 modes, i.e., ‘HTTP’, ‘streaming’

and ‘serializing’. In ‘HTTP’ mode, the function is forked only once

to one instance (worker) at the beginning and kept warm for the

entire life-cycle of the function pod. In both the ‘streaming’ and

‘serializing’ mode, a new function instance (worker) is forked for

every request, resulting in significant cold-start latency and im-

pact on the throughput. Fig. 4 shows the throughput and latency

when running the watchdog in different supported modes. The

‘streaming’ mode results in very low performance and is typically

only desirable for memory-heavy workloads, while the ‘serializing’

mode is equally poor due to fork per request. For our subsequent

evaluation, we choose the ‘HTTP’ mode.

Knative: Fig. 2c, shows the key components of Knative.We see that

each function pod consists of two containers namely the ‘queue-

proxy’ and the ‘function’. The ‘queue-proxy’ is responsible for
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Figure 4. Throughput and latency for different modes of OpenFaaS

of-watchdog (100 concurrent requests).

queuing incoming requests and forwarding them to the ‘function’

container for execution. It also handles the timeout of queued re-

quests. This queue enables the worker to quickly fetch requests

from the ingress controller and process them, thus achieving better

throughput, although incurring queuing latency. Interestingly, we

can observe that since Knative implements the ‘queue-proxy’ and

‘function’ as two different containers in a pod, the communica-

tion overhead is higher than the process model of the Nuclio and

OpenFaaS, resulting in relatively lower performance.
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Figure 5. Throughput and latency for different number of workers

within one Knative function pod (100 concurrent requests).

For the python runtime, we observed that Knative levarages

gunicorn
7
- a Python web server gateway interface (WSGI) server,

which supports the pre-forkworkermodel to createmultiple worker

processes in a function pod. However, unlike Nuclio, the number of

concurrent workers is not exported as a configuration parameter for

deployment. Figure 5 shows the impact on throughput and latency

for multiple workers. The characteristics are similar to the Nuclio

workers, discussed earlier.

Another distinct feature of Knative is the ‘panic mode’ scaling

mechanism of the autoscaler component. Panic mode enables the

autoscaler to be more responsive to sudden traffic spikes (two

times the desired average traffic or a configured threshold value)

by quickly scaling the functions instances (up to 10× the current

pod count or the maximum configured limit).

Kubeless: Kubeless is another open source platform built on top

of Kubernetes. Figure 2d describes the key components and the

working model of serverless functions in Kubeless. We also experi-

mented with NGINX ingress controller,
8
and opted for Traefik due

to better performance.

2.3.1 Exporting Services and Network routing
Serverless frameworks leverage Kubernetes network model to ex-

port services (cluster of function pods) and to route requests to

specific functions. An API Gateway and/or the Ingress Controller

components of the serverless platform can be either exported with

a public IP address or can also use the Kubernetes networking

7 http://gunicorn.org 8 https://kubernetes.github.io/ingress-nginx

model to export the services. Fig. 1 describes ‘Flannel’ - a simple

Kubernetes overlay networking framework to export serverless

functions and route the traffic to function pods. The Kube-Proxy

component of Kubernetes is responsible for setting up the routing

and load-balancing rules (e.g., setup the netfilter rules to intercept

network packets and change their destination/routing) of the traf-

fic intended for Kubernetes pods, while the Kube-Flannel pod is

responsible for intercepting the packets destined for Kubernetes

pods (listen to traffic for the virtual Kubernetes pod IP range) and

performing UDP encapsulation/decapsulation for the traffic exit-

ing/entering the physical network interface. In Fig. 1, once the API

Gateway/Ingress Controller receives client packets, and determines

the service (function) to be executed, it leverages the Kube-Proxy

and Kube-Flannel to load-balance and route the traffic to a specific

function pod of a worker node. With Kube-Flannel, the traffic leav-

ing the physical network interface is encapsulated and carried over

an unreliable UDP transport.

Impact of Ingress Controller and API Gateway components:
Typically, the API Gateway components enable the URL based rout-

ing to different services in a Kubernetes cluster. The function pods

are dynamic entities that can be created and destroyed any time

because of zero-scaling, auto-scaling, failures etc. Hence, Kuber-
netes provides service (a virtual cluster with fixed IP, a.k.a. ‘Cluster
IP’) as an abstraction to access the pods of a similar kind. The API

Gateway/Ingress controllers can route the incoming requests in

two possible ways: i) route the incoming traffic to the service and

let Kubernetes control load-balancing of the traffic across active

pods (e.g., with the OpenFaaS API Gateway); ii) load-balance and

route the traffic directly to any of the active pod instances (e.g.,
with the Knative-Istio ingress controller).

In the former case (API Gateway), we observed that, in order

to avoid the overhead of connection setup time, the API Gateway

(OpenFaaS API Gateway) sets up multiple connections with the

service ‘Cluster IP’
9
at the beginning (the first access to the func-

tion) and it uses these connections to forward subsequent requests.

No new connections are setup afterwards, unless the existing con-

nections get terminated. Note that if the connections are not setup

after auto-scaling, the traffic cannot get distributed to the newly

created pods, thus significantly impacting the performance with

auto-scaling (refer §3.3). However, in the second case (case ii), the

ingress controller needs to keep track of the health and status of

all the active pods and setup the connections explicitly with each

of the active pods to load-balance the traffic.

3 Evaluation
The main focus of our evaluation is to distinguish and illustrate

the impact of the serverless platform specific design choices and

their dependency on the Kubernetes orchestration andmanagement

services. A second important focus is to understand the auto-scaling

capabilities, and the need to go beyond the resource utilization

based scaling services provided by Kubernetes.

3.1 Experimental setup and Workload description
We evaluate the serverless platforms on the Cloudlab testbed [9]

consisting of one master and two worker nodes, each of them

equipped with Intel CPU E5-2640v4@2.4GHz (10 physical cores),

running Ubuntu 16.04.1 LTS (kernel 4.4.0-154-generic). We built all

four serverless platforms on Kubernetes (v1.15.3), using the latest

9
Service being a logical entity, the actual TCP connections are setup with different

active pods based on the Kubernetes routing/load-balancing rules (e.g., netfilter rules).

http://gunicorn.org
https://kubernetes.github.io/ingress-nginx
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version available at the time of writing.
10

We choose Python 3.6

and implement different serverless functions viz. i) simple Hello-

world function as the baseline, and ii) HTTP server function that

fetches and serves pages of different sizes from the local HTTP

server. We use wrk [1] to generate the HTTP workloads and invoke

the serverless functions.

3.2 Performance - Throughput and Latency
3.2.1 Baseline Performance
To evaluate the baseline performance i.e., throughput (average
requests processed per seconds) and response latency of different

serverless platforms, we use a simple ‘Hello-world’ - a no operation

function, that returns 4 bytes of static text in the response. For a

fair comparison, we limit to a single instance of the function pod,

disable auto-scaling and configured the same queue size and timeout

parameters (50K requests, and 10s timeout) at the ingress/gateway

and function pod components across all the platforms. For Nuclio,

we further restricted it to a single worker process.
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Figure 6. Throughput and latency of ‘hello-world’ function.

Fig. 6a shows the baseline throughput achieved by different

platforms for different concurrent executions of requests. Nuclio

outperforms the other platforms due to the low overhead of a direct

function call. Routing through the API gateway/Ingress controller

components incurs not just the overhead for HTTP connection

termination, but also for the context-switch/transfer of the packets

across the kernel and user-space of the worker node twice to get

it routed to the function pod as shown in the Fig. 1. To quantify

the overhead, we also experimented with Nuclio using an ingress

controller mode and observed the overhead. It resulted in almost

half the throughput (∼1700 RPS as opposed to ∼3000 RPS for direct
call) and nearly 2× latency overhead (increases from 356µs to 611µs).
At the other extreme, Kubeless forks the function for every request,

resulting in severely degraded throughput and latency.

From Fig. 6b, we can observe that median latency is lowest for

Kubeless, and is marginally higher (20∼50 ms) for the queue based

frameworks. However, tail latency (above 95%ile) degrades severely

for Kubeless and OpenFaaS, while Nuclio and Knative do not see

this increased heavy tail-latency. The results indicate that having

process based communicationwithin a container (e.g.,Nuclio) along
with a local worker queue achieves better throughput by having

lower overhead for processing requests.

3.2.2 HTTP Workload
Next, we change to having http-workload.Again, we keep the server-

less platform settings the same as described in the baseline exper-

iment §3.2.1. Fig. 7 shows the throughput for varying number of

10
Nuclio (v1.1.16). OpenFaaS consists of: Gateway (v0.17.0), Faas-netes (v0.8.6),

Prometheus (v2.11.0), Alert manager (v0.18.0), Queue worker (v0.8.0) and Faas-cli

(v0.9.2), and the HTTP mode of-watchdog. We use Knative (v0.8) with Istio (v1.1.7)

ingress controller, and Kubeless (v1.0.4) with Traefik ingress controller (v1.7).

concurrent connections and the latency profile for concurrency

level of 100. Nuclio has the least 99%ile latency within 500ms, as

it allows queuing only within the function pod, while OpenFaaS

and Knative can queue requests at ingress/gateway components.

OpenFaaS shows heavy tail due to queuing at both the gateway

and watchdog components, each having distinct timeout param-

eters. Kubeless drops the connections at the ingress, resulting in

additional retries from the client - hence it’s lower throughput (the

lower latency with Kubeless is because it is measured only for those

requests that succeed at a concurrency level of 100).
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Figure 7. Throughput & latency of ‘http-workload’ function across

different serverless platforms at different concurrency levels.

3.2.3 Variable Payload Size
For this experiment, in order to assess the data transfer overhead

of serverless platforms, we scale the size of payload in the HTTP

response and analyze the overheads and impact of assembling,

packaging and transporting the HTTP response payload across

different serverless platforms. In Fig. 8, we observe that Nuclio

performs better for small payload sizes (i.e., less than 1KB), while

OpenFaaS and Knative perform better for large payloads.
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Figure 8. Throughput & latency of ‘http-workload’ function with

different payload sizes for different serverless platforms.

3.2.4 Impact of different modes of exporting services
In order to avoid the added queuing latency, we run the http work-

load with wrk tool and limit the number of maximum concurrent

(in-flight) requests to 1 and repeat the experiment 1000 times. Fig. 9

shows the impact on throughput and latency for three different

modes of exporting and invoking the serverless functions. LC refers

to local call, where the client and function pods reside on the

same node in the Kubernetes cluster, and client invokes the func-

tion directly using the IP-address of the function pod. Nuclio has

marginally better throughput and lower latency than Knative and

OpenFaaS, while Kubeless suffers in both latency and throughput.

IG/GW refers to exporting and invocation of serverless function

through the ingress/API gateway components. This mode brings

down the throughput across all platforms, and also incurs (∼ 1ms)

additional latency than ‘LC’ mode.DC (direct call) approach is only

supported by Nuclio, which exports the function pod using the
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nodeport service of Kubernetes. DC avoids the additional routing

overheads in the worker node (netfilter rules that translate the

packet destination, and forward the packets to the function pod).

DC LC IG/GW
Access Mode

0

1

2

3

4

T
h

ro
u

g
h

p
u

t 
(R

P
S

)

×102

Nuclio

OpenFaaS

Knative

Kubeless

(a) Throughput in requests/second.

DC LC IG/GW
Access Mode

0

5

10

15

20

L
a

te
n

c
y
 (

m
s
)

 

Nuclio

OpenFaaS

Knative

Kubeless

(b) Latency in ms.

Figure 9. Throughput & latency for different methods of exporting

the services on different serverless platforms.

3.2.5 Analysing the latency impact of serverless platforms
We analyze the delay overheads incurred in processing the server-

less functions for different platforms. We breakdown the processing

delays within the function pod. For this experiment, we use curl
to send one request for ‘hello-world’ function and use tcpdump to
capture the packets on the worker node of the function pod. We

record four timestamps, i.e., (1) when the request reaches the func-

tion pod; (2) start of the function runtime; (3) end of the function

runtime; (4) when the response is sent out of function pod. Time

intervals between these timestamps are shown in Fig. 10. In all

frameworks, the actual run-time of the function (0.001ms) is the

same. However, the function initiation time (time taken for request

to be forwarded to the function instance) and function response

delay (time taken for the response of the function to be sent out

of the pod) vary. This depends on how the data is packaged and

shared with the function instance. Also, Kubeless (due to forking

per request), incurs very high delay in forwarding the packet to the

function instance. We also experimented with the ’http-function’

and found the startup and response delay overheads to be same.

Function Pod

Function
Runtime

1

2 3

4 Process 1→2 2→3 3→4

Nuclio 0.63 0.001 0.54

OpenFaaS 1.32 0.001 0.93

Knative 1.30 0.001 0.62

Kubeless 4.96 0.001 2.63

Figure 10. Latency breakdown (ms) parts of serverless execution.

3.3 Auto-scaling
Auto-scaling capabilities exported by different serverless platforms

vary. Here, we compare the auto-scaling features of Knative and

OpenFaaS for both the rate-based and Kubernetes-based horizontal-

pod-autoscaler (HPA) modes under different workload characteris-

tics. For a fair comparison, we tune the auto-scaling related config-

uration parameters in both the platforms to have the same interval

for the auto-scale triggers and factors for scaling functions.
11

We

use the same python function as in §3.2.2.Note: In OpenFaaS, auto-

scaling is based on the average rate of the incoming requests (RPS);

in Knative, auto-scaling is based on the concurrency level observed

per function instance. The subtle difference is that the average RPS

11
In Knative, we disable panic mode, and set the minScale and maxScale instances as

1 and 10, target to 10, max-scale-up-rate to 100, tick interval to 2s, and stable window

to 10s, which ensures triggering auto-scale notifications on a 2s window and scaling

to 1 or more instances at a time. Likewise, for OpenFaaS, we set scale-factor to 10 and

configure the alert-notification window to 2s, and RPS threshold to 10. For HPA, we

set CPU limits to 50.

value can be lower or higher than the observed concurrency de-

pending on whether the time for processing a function invocation

is higher or lower respectively. We will demonstrate the benefit

and deficiency of both approaches.

3.3.1 Workload based auto-scaling
Steady workload: We use the wrk tool, set a steady rate for out-

standing requests (concurrency of 100) and run the experiment for

60s. Also, to enforce proper traffic distribution across newly created

pods, we force the OpenFaaS gateway to terminate and reestab-

lish connections with the function pods. Periodically, every 2s, we

monitor the number of pod instances, CPU and memory usage, and

throughput. From Fig. 11, we observe that Knative scales multiple

instances at a time to reach the max. (10) instances quickly (in 12s),

while OpenFaaS just scales up one instance at a time, taking 26s

to scale up to the max. (10) instances. Although, the CPU usage

for the scaled instances looks identical, the memory pressure is

higher for Knative. This stems from the difference in the python

runtimes and overheads in the queue-proxy container component

for Knative and of-watchdog components in OpenFaaS.
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(a) Knative.
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Figure 11. Auto-scaling with steady workload.

Bursty workloadWe also experimented by varying the http work-

load to have bursts of concurrent requests followed by a large idle

period. Fig. 12 shows that, Knative is more responsive to bursts,

and is able to scale quickly to a large number of instances, while

OpenFaaS scales gradually and has lower average throughput.
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(a) Knative.
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Figure 12. Auto-scaling with bursty workload.
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Figure 13. Auto-scaling issues with Knative and OpenFaaS.
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Issues with auto-scaling in OpenFaaS and Knative: In another
experiment, we use the same setup as in the steady workload ex-

periment, but lower the number of outstanding requests from 100

to 9. From Fig. 13, we observe that Knative fails to auto-scale and

continues to operate with just 1 function pod instance, resulting in

almost 7× lower (200 RPS) throughput compared to the earlier case

(1500 RPS). Next, we revert to vanilla OpenFaaS (i.e., as in github,

and disable the workaround of resetting the connections to the

function pods), and run the same steady workload experiment. The

function pods get auto-scaled as before. But, the throughput shows

no improvement. Also, note that with auto-scaling the memory

usage increases, but CPU utilization remains steady. We found the

issue to be due to incorrect traffic distribution. Due to the long

running connections (setup by OpenFaaS gateway at the beginning

with the first function pod), all the traffic is just routed only to the

first function pod, while the remaining, newly scaled pods, do not

receive any traffic.
12

3.3.2 Resource based auto-scaling
We use the same setup (steady state), configure the cpu usage limit

to 50%, and leverage Kubernetes HPA for auto-scaling. Note, the

auto-scaling of function pods is governed by Kubernetes only. From

Fig. 14, we can observe that, except for Kubeless, the auto-scaling

behavior is same across all the platforms i.e., auto-scaling tries to
double the instances at each step until it reaches the maximum (10).

However, the duration of each step depends on the CPU utilization

factor, which in turn depends on the serverless platform specific

components (event-listener, of-watchdog, queue-proxy). Nuclio,

being relatively more CPU hungry is able to scale more rapidly

(in 40s), than Knative and OpenFaaS. With Kubeless, the fork-per-

request results in high latency, dropping of incoming requests that

in turn results in low throughput and low CPU utilization. Thus, it

results in poor auto-scaling as well.
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(a) Nuclio.
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(b) OpenFaaS.
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(c) Knative.
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(d) Kubeless.
Figure 14. HPA-based auto-scaling on steady workload.

4 Related Work
Serverless Platform comparison: In work [6, 11], the authors

conducted several measurements on different cloud serverless plat-

forms (AWS Lambda, Microsoft Azure, Google Cloud), and found

the AWS to be better in terms of throughput, scalability, cold-start

12
Bug raised: https://github.com/openfaas/faas/issues/1303.

latency. The works [5, 12] investigate the different factors that in-

fluence the performance of AWS lambda, namely the impact of

the choice of language of the function, memory footprint of the

function, etc. Work [7] evaluates the performance of Fission, Kube-

less and OpenFaaS serverless frameworks and characterizes the

response time and the ratio of successfully completed requests for

different loads. However the work fails to characterize the through-

put of these platforms and accounts for the mean latency (response

time) and successful responses at different load characteristics,

which is debatable, without the proper consideration and configu-

ration of the serverless platform specific configuration parameters,

resulting in inaccurate results. In the most recent work [8], the

authors quantitatively evaluate Apache OpenWhisk, OpenFaas,

Kubeless, and Knative platforms. The results for Kubeless are sim-

ilar, but for the other platforms, we feel the presented results are

inaccurate. This could be due to the usage of Kubernetes. In contrast,

our work focuses on discerning the architectural blocks that im-

pact the performance of Kubernetes based open-source serverless

platforms.

5 Summary
Through measurements, we explored different open-source server-

less platforms and identified the key design considerations and their

impact on performance and auto-scaling. We show that the interac-

tion between the API Gateway/Ingress controller and the function

pods, the overheads of this component and the way requests are

queued influence baseline performance. Further, the ‘RPS’-based

and ‘Concurrency’-based auto-scaling approaches by themselves

are insufficient and need to evolve to properly meet workload

demands, so that we can avoid maintaining a large number of in-

stances active. Acknowledgements: This work was supported

by US NSF grants CRI-1823270 and CNS-1763929, and grants from

Hewlett Packard Enterprise Co., Futurewei Technologies Inc, and

the National Key Research and Development Program of China
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